Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation
نویسندگان
چکیده
The coagulation of blood plasma in response to activation with a range of tissue factor (TF) concentrations was studied with a quartz crystal microbalance (QCM), where frequency and half width at half maximum (bandwidth) values measured from the conductance spectrum near resonant frequency were used. Continuous measurement of bandwidth along with the frequency allows for an understanding of the dissipative nature of the forming viscoelastic clot, thus providing information on the complex kinetics of the viscoelastic changes occurring during the clot formation process. Using a mathematical model, these changes in frequency and bandwidth have been used to derive novel QCM parameters of effective elasticity, effective mass density and rigidity factor of the viscoelastic layer. The responses of QCM were compared with those from thromboelastography (TEG) under identical conditions. It was demonstrated that the nature of the clot formed, as determined from the QCM parameters, was highly dependent on the rate of clot formation resulting from the TF concentration used for activation. These parameters could also be related to physical clot characteristics such as fibrin fibre diameter and fibre density, as determined by scanning electron microscopic image analysis. The maximum amplitude (MA) as measured by TEG, which purports to relate to clot strength, was unable to detect these differences.
منابع مشابه
A Study on Ratio of Loss to Storage Modulus for the Blood Clot
In this study the rheology of blood clot is measured with the help of rotational rheometer. Several shear strain (0.5, 1 and 2%) are applied with two frequencies (5 and 10 Hz) from the incipient time of clot formation and the response of the sample is measured with the form of shear stress and the phase lag which is interpreted with storage and loss moduli. In this study the ratio of loss to st...
متن کاملStudy of garlic effect on fibrinolytic activity of the blood clot in vitro
Abstract Introduction The main function of the fibrinolytic system is to dissolve fibrin clots in circulation. This system is composed of inactive precursor plasminogen which can be converted into plasmin by the proteolytic enzymes like tissue-type plasminogen activator (tPA). Fibrinolytic properties can be found in a variety of medicine plants and they could effectively prevent cardiovascula...
متن کاملMechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology
Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...
متن کاملThe Effect of Polarized Laser Radiation on Viscoelastic Properties of Soft Tissue
Background: Laser-tissue interaction on low-level laser therapy (LLLT) has widespread medical applications (e.g., improved wound healing). The tensile strength of radiated tissue by LLLT is known to be increased mainly because of cross collagen bands developed after radiation.Objective: In this work, we studied the instantaneous effect of radiation of polarized laser beam on the viscoelastic ti...
متن کاملFeedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis.
Recently, an alternative pathway for factor XI activation has been described in which factor XI is activated by thrombin. Patients with a factor XI deficiency bleed mostly from tissues with high local fibrinolytic activity. Therefore, the role of thrombin-mediated factor XI activation in both fibrin formation and fibrinolysis was studied in a plasma system. Clotting was induced by the addition ...
متن کامل